Copied to
clipboard

G = C4xC32:C4order 144 = 24·32

Direct product of C4 and C32:C4

direct product, metabelian, soluble, monomial, A-group

Aliases: C4xC32:C4, C32:1C42, (C3xC12):1C4, C3:Dic3:4C4, (C4xC3:S3).8C2, C3:S3.5(C2xC4), (C3xC6).3(C2xC4), C2.2(C2xC32:C4), (C2xC32:C4).6C2, (C2xC3:S3).8C22, SmallGroup(144,132)

Series: Derived Chief Lower central Upper central

C1C32 — C4xC32:C4
C1C32C3:S3C2xC3:S3C2xC32:C4 — C4xC32:C4
C32 — C4xC32:C4
C1C4

Generators and relations for C4xC32:C4
 G = < a,b,c,d | a4=b3=c3=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

Subgroups: 198 in 46 conjugacy classes, 18 normal (10 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, C42, C32:C4, C2xC32:C4, C4xC32:C4
9C2
9C2
2C3
2C3
9C4
9C22
9C4
9C4
9C4
9C4
2C6
2C6
6S3
6S3
6S3
6S3
9C2xC4
9C2xC4
9C2xC4
2C12
2C12
6D6
6D6
6Dic3
6Dic3
9C42
6C4xS3
6C4xS3

Character table of C4xC32:C4

 class 12A2B2C3A3B4A4B4C4D4E4F4G4H4I4J4K4L6A6B12A12B12C12D
 size 119944119999999999444444
ρ1111111111111111111111111    trivial
ρ2111111-1-11-1-1-1-1-1111-111-1-1-1-1    linear of order 2
ρ3111111-1-1-1-11111-1-1-1-111-1-1-1-1    linear of order 2
ρ411111111-11-1-1-1-1-1-1-11111111    linear of order 2
ρ51-1-1111-ii-1-i-iii-i-111i-1-1-ii-ii    linear of order 4
ρ61-1-1111i-i-1ii-i-ii-111-i-1-1i-ii-i    linear of order 4
ρ711-1-11111-i-1ii-i-iii-i-1111111    linear of order 4
ρ81-1-1111i-i1i-iii-i1-1-1-i-1-1i-ii-i    linear of order 4
ρ911-1-111-1-1i1ii-i-i-i-ii111-1-1-1-1    linear of order 4
ρ101-11-111-iiii1-11-1-ii-i-i-1-1-ii-ii    linear of order 4
ρ111-11-111i-i-i-i1-11-1i-iii-1-1i-ii-i    linear of order 4
ρ121-11-111i-ii-i-11-11-ii-ii-1-1i-ii-i    linear of order 4
ρ131-11-111-ii-ii-11-11i-ii-i-1-1-ii-ii    linear of order 4
ρ141-1-1111-ii1-ii-i-ii1-1-1i-1-1-ii-ii    linear of order 4
ρ1511-1-111-1-1-i1-i-iiiii-i111-1-1-1-1    linear of order 4
ρ1611-1-11111i-1-i-iii-i-ii-1111111    linear of order 4
ρ174400-21440000000000-2111-2-2    orthogonal lifted from C32:C4
ρ1844001-2-4-400000000001-222-1-1    orthogonal lifted from C2xC32:C4
ρ194400-21-4-40000000000-21-1-122    orthogonal lifted from C2xC32:C4
ρ2044001-24400000000001-2-2-211    orthogonal lifted from C32:C4
ρ214-400-21-4i4i00000000002-1-ii2i-2i    complex faithful
ρ224-4001-24i-4i0000000000-12-2i2ii-i    complex faithful
ρ234-400-214i-4i00000000002-1i-i-2i2i    complex faithful
ρ244-4001-2-4i4i0000000000-122i-2i-ii    complex faithful

Permutation representations of C4xC32:C4
On 24 points - transitive group 24T240
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22 3 24)(2 23 4 21)(5 15 12 18)(6 16 9 19)(7 13 10 20)(8 14 11 17)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22,3,24)(2,23,4,21)(5,15,12,18)(6,16,9,19)(7,13,10,20)(8,14,11,17)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22,3,24)(2,23,4,21)(5,15,12,18)(6,16,9,19)(7,13,10,20)(8,14,11,17) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22,3,24),(2,23,4,21),(5,15,12,18),(6,16,9,19),(7,13,10,20),(8,14,11,17)]])

G:=TransitiveGroup(24,240);

C4xC32:C4 is a maximal subgroup of
C32:C4wrC2  C32:C4:C8  C4.4PSU3(F2)  (C3xC24):C4  C32:6C4wrC2  C32:7C4wrC2  C4:F9  C4.4S3wrC2  C32:C4:Q8  C4:S3wrC2  C4.3PSU3(F2)  C4:PSU3(F2)  (C6xC12):5C4
C4xC32:C4 is a maximal quotient of
(C3xC24):C4  C32:2C8:C4  (C6xC12):2C4

Matrix representation of C4xC32:C4 in GL4(F5) generated by

3000
0300
0030
0003
,
1031
3003
0003
4200
,
0300
3400
3043
0230
,
4004
0002
0412
0020
G:=sub<GL(4,GF(5))| [3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[1,3,0,4,0,0,0,2,3,0,0,0,1,3,3,0],[0,3,3,0,3,4,0,2,0,0,4,3,0,0,3,0],[4,0,0,0,0,0,4,0,0,0,1,2,4,2,2,0] >;

C4xC32:C4 in GAP, Magma, Sage, TeX

C_4\times C_3^2\rtimes C_4
% in TeX

G:=Group("C4xC3^2:C4");
// GroupNames label

G:=SmallGroup(144,132);
// by ID

G=gap.SmallGroup(144,132);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,55,3364,256,4613,881]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C4xC32:C4 in TeX
Character table of C4xC32:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<