direct product, metabelian, soluble, monomial, A-group
Aliases: C4×C32⋊C4, C32⋊1C42, (C3×C12)⋊1C4, C3⋊Dic3⋊4C4, (C4×C3⋊S3).8C2, C3⋊S3.5(C2×C4), (C3×C6).3(C2×C4), C2.2(C2×C32⋊C4), (C2×C32⋊C4).6C2, (C2×C3⋊S3).8C22, SmallGroup(144,132)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C2×C3⋊S3 — C2×C32⋊C4 — C4×C32⋊C4 |
C32 — C4×C32⋊C4 |
Generators and relations for C4×C32⋊C4
G = < a,b,c,d | a4=b3=c3=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >
Character table of C4×C32⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 1 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -1 | -i | -i | i | i | -i | -1 | 1 | 1 | i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -1 | i | i | -i | -i | i | -1 | 1 | 1 | -i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -1 | i | i | -i | -i | i | i | -i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | 1 | i | -i | i | i | -i | 1 | -1 | -1 | -i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | 1 | i | i | -i | -i | -i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | i | 1 | -1 | 1 | -1 | -i | i | -i | -i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | -i | 1 | -1 | 1 | -1 | i | -i | i | i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | -i | i | -i | i | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | i | -i | i | -i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | 1 | -i | i | -i | -i | i | 1 | -1 | -1 | i | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | 1 | -i | -i | i | i | i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -1 | -i | -i | i | i | -i | -i | i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | -2 | -2 | orthogonal lifted from C32⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 2 | 2 | -1 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -1 | -1 | 2 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ20 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | -2 | 1 | 1 | orthogonal lifted from C32⋊C4 |
ρ21 | 4 | -4 | 0 | 0 | -2 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -i | i | 2i | -2i | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 1 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2i | 2i | i | -i | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | -2 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | i | -i | -2i | 2i | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 1 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2i | -2i | -i | i | complex faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22 3 24)(2 23 4 21)(5 15 12 18)(6 16 9 19)(7 13 10 20)(8 14 11 17)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22,3,24)(2,23,4,21)(5,15,12,18)(6,16,9,19)(7,13,10,20)(8,14,11,17)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22,3,24)(2,23,4,21)(5,15,12,18)(6,16,9,19)(7,13,10,20)(8,14,11,17) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22,3,24),(2,23,4,21),(5,15,12,18),(6,16,9,19),(7,13,10,20),(8,14,11,17)]])
G:=TransitiveGroup(24,240);
C4×C32⋊C4 is a maximal subgroup of
C32⋊C4≀C2 C32⋊C4⋊C8 C4.4PSU3(𝔽2) (C3×C24)⋊C4 C32⋊6C4≀C2 C32⋊7C4≀C2 C4⋊F9 C4.4S3≀C2 C32⋊C4⋊Q8 C4⋊S3≀C2 C4.3PSU3(𝔽2) C4⋊PSU3(𝔽2) (C6×C12)⋊5C4
C4×C32⋊C4 is a maximal quotient of
(C3×C24)⋊C4 C32⋊2C8⋊C4 (C6×C12)⋊2C4
Matrix representation of C4×C32⋊C4 ►in GL4(𝔽5) generated by
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
1 | 0 | 3 | 1 |
3 | 0 | 0 | 3 |
0 | 0 | 0 | 3 |
4 | 2 | 0 | 0 |
0 | 3 | 0 | 0 |
3 | 4 | 0 | 0 |
3 | 0 | 4 | 3 |
0 | 2 | 3 | 0 |
4 | 0 | 0 | 4 |
0 | 0 | 0 | 2 |
0 | 4 | 1 | 2 |
0 | 0 | 2 | 0 |
G:=sub<GL(4,GF(5))| [3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[1,3,0,4,0,0,0,2,3,0,0,0,1,3,3,0],[0,3,3,0,3,4,0,2,0,0,4,3,0,0,3,0],[4,0,0,0,0,0,4,0,0,0,1,2,4,2,2,0] >;
C4×C32⋊C4 in GAP, Magma, Sage, TeX
C_4\times C_3^2\rtimes C_4
% in TeX
G:=Group("C4xC3^2:C4");
// GroupNames label
G:=SmallGroup(144,132);
// by ID
G=gap.SmallGroup(144,132);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,55,3364,256,4613,881]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations
Export
Subgroup lattice of C4×C32⋊C4 in TeX
Character table of C4×C32⋊C4 in TeX